dynamic-programming
动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。
最长回文子串
中心扩展
func longestPalindrome(s string) string {
if s == "" {
return ""
}
var start, end int
for i := 0; i < len(s); i++ {
if l, r := expand(s, i, i); r-l > end-start {
start, end = l, r
}
if l, r := expand(s, i, i+1); r-l > end-start {
start, end = l, r
}
}
return s[start : end+1]
}
func expand(s string, i, j int) (int, int) {
left, right := i, j
for left >= 0 && right < len(s) && s[left] == s[right] {
left, right = left-1, right+1
}
return left + 1, right - 1
}
Manacher 算法
接雨水
func trap(height []int) (ans int) {
left, right := 0, len(height)-1
leftMax, rightMax := 0, 0
for left < right {
leftMax = max(leftMax, height[left])
rightMax = max(rightMax, height[right])
if height[left] < height[right] {
ans += leftMax - height[left]
left++
} else {
ans += rightMax - height[right]
right--
}
}
return
}
func max(x, y int) int {
if x > y {
return x
}
return y
}
连续子数组的最大和
func maxSubArray(nums []int) int {
max := nums[0]
for i := 1; i < len(nums); i++ {
if nums[i]+nums[i-1] > nums[i] {
nums[i] += nums[i-1]
}
if nums[i] > max {
max = nums[i]
}
}
return max
}
乘积最大子序列
func maxProduct(nums []int) int {
globalMax, localMax, localMin := math.MinInt64, 1, 1
for _, num := range nums {
localMax, localMin = max(num*localMax, num*localMin, num), min(num*localMax, num*localMin, num)
globalMax = max(globalMax, localMax)
}
return globalMax
}
func max(nums ...int) int {
n := nums[0]
for i := 0; i < len(nums); i++ {
if nums[i] > n {
n = nums[i]
}
}
return n
}
func min(nums ...int) int {
n := nums[0]
for i := 0; i < len(nums); i++ {
if nums[i] < n {
n = nums[i]
}
}
return n
}
买卖股票的最佳时机
// 解法一
func maxProfit(prices []int) (ans int) {
if len(prices) == 0 {
return
}
minPrice := prices[0]
for _, price := range prices {
minPrice = min(minPrice, price)
ans = max(price-minPrice, ans)
}
return
}
// 解法二 单调栈
func maxProfit(prices []int) (ans int) {
if len(prices) == 0 {
return
}
stack := []int{prices[0]}
for i := 1; i < len(prices); i++ {
if prices[i] > stack[len(stack)-1] {
stack = append(stack, prices[i])
} else {
index := len(stack) - 1
for ; index >= 0; index-- {
if stack[index] < prices[i] {
break
}
}
stack = stack[:index+1]
stack = append(stack, prices[i])
}
ans = max(ans, stack[len(stack)-1]-stack[0])
}
return
}
func max(x, y int) int {
if x > y {
return x
}
return y
}
func min(x, y int) int {
if x < y {
return x
}
return y
}
不同路径
我们用 f(i,j) 表示从左上角走到 (i,j) 的路径数量,其中 i 和 j 的范围分别是 [0,m) 和 [0,n)。
由于我们每一步只能从向下或者向右移动一步,因此要想走到 (i,j),如果向下走一步,那么会从 (i−1,j) 走过来;如果向右走一步,那么会从 (i,j−1) 走过来。因此我们可以写出动态规划转移方程:
f(i,j)=f(i−1,j)+f(i,j−1)
// 一维
func uniquePaths(m, n int) int {
if m < n {
return uniquePaths(n, m)
}
ways := make([]int, n)
for j := range ways {
ways[j] = 1
}
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
ways[j] += ways[j-1]
}
}
return ways[n-1]
}
// 二维
func uniquePaths(m, n int) int {
dp := make([][]int, m)
for i := range dp {
dp[i] = make([]int, n)
dp[i][0] = 1
}
for j := 0; j < n; j++ {
dp[0][j] = 1
}
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
dp[i][j] = dp[i-1][j] + dp[i][j-1]
}
}
return dp[m-1][n-1]
}
从左上角到右下角,需要移动 m+n−2 次,其中有 m−1 次向下移动,n−1 次向右移动。因此路径的总数,就等于从 m+n−2 次移动中选择 n−1 次向下移动的方案数,即组合数: $C_{m+n−2}^{n−1}$
func uniquePaths(m, n int) int {
return int(new(big.Int).Binomial(int64(m+n-2), int64(n-1)).Int64())
}
最小路径和
// 最原始的方法,辅助空间 O(n^2)
func minPathSum(grid [][]int) int {
if len(grid) == 0 || len(grid[0]) == 0 {
return 0
}
m, n := len(grid), len(grid[0])
dp := make([][]int, m)
for i := 0; i < m; i++ {
dp[i] = make([]int, n)
}
dp[0][0] = grid[0][0]
for i := 1; i < m; i++ {
dp[i][0] = dp[i-1][0] + grid[i][0]
}
for j := 1; j < n; j++ {
dp[0][j] = dp[0][j-1] + grid[0][j]
}
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]
}
}
return dp[m-1][n-1]
}
func min(x, y int) int {
if x < y {
return x
}
return y
}
爬楼梯
func climbStairs(n int) int {
a, b, c := 0, 0, 1
for i := 1; i <= n; i++ {
a = b
b = c
c = a + b
}
return c
}
斐波那契数
这道题至少有 6 种解法
func fib(n int) int {
if n < 2 {
return n
}
a, b, c := 0, 0, 1
for i := 2; i <= n; i++ {
a = b
b = c
c = a + b
}
return c
}
根据题目要求,答案需要取模 1e9+7
func fib(n int) int {
if n < 2 {
return n
}
const mod int = 1e9 + 7
a, b, c := 0, 0, 1
for i := 2; i <= n; i++ {
a = b
b = c
c = (a + b) % mod
}
return c
}
func numWays(n int) int {
a, b, c := 0, 0, 1
for i := 1; i <= n; i++ {
a = b
b = c
c = (a + b) % 1000000007
}
return c
}
最长递增子序列
动态规划 dp[i] = max(dp[j]) + 1,其中 0 ≤ j < i 且 num[j] < num[i]
func lengthOfLIS(nums []int) int {
if len(nums) == 0 {
return 0
}
dp := make([]int, len(nums))
dp[0] = 1
maxLen := 1
for i := 1; i < len(nums); i++ {
max := 0
for j := 0; j < i; j++ {
if nums[i] > nums[j] && dp[j] > max {
max = dp[j]
}
}
dp[i] = max + 1
if dp[i] > maxLen {
maxLen = dp[i]
}
}
return maxLen
}